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We show that local-moment screening in a Kondo lattice with d-wave superconducting conduction electrons
is qualitatively different from the corresponding single Kondo impurity case. Despite the conduction-electron
pseudogap, Kondo-lattice screening is stable if the gap amplitude obeys ���TKD, in contrast to the single-
impurity condition ��TK �where TK is the Kondo temperature for �=0 and D is the bandwidth�. Our theory
explains the heavy electron behavior in the d-wave superconductor Nd2−xCexCuO4.
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I. INTRODUCTION

The physical properties of heavy-fermion metals are com-
monly attributed to the Kondo effect, which causes the hy-
bridization of local 4f and 5f electrons with itinerant con-
duction electrons. The Kondo effect for a single magnetic ion
in a metallic host is well understood.1 In contrast, the physics
of the Kondo lattice, with one magnetic ion per crystallo-
graphic unit cell, is among the most challenging problems in
correlated electron systems. At the heart of this problem is
the need for a deeper understanding of the stability of col-
lective Kondo screening. Examples are the stability with re-
spect to competing ordered states �relevant in the context of
quantum criticality2� or low conduction electron concentra-
tion �as discussed in the so-called exhaustion problem3�. In
these cases, Kondo screening of the lattice is believed to be
more fragile in comparison to the single-impurity case. In
this paper, we analyze the Kondo lattice in a host with a
d-wave conduction electron pseudogap.4 We demonstrate
that Kondo-lattice screening is then significantly more robust
than single-impurity screening. The unexpected stabilization
of the state with screened moments is a consequence of the
coherency of the hybridized heavy Fermi liquid, i.e., it is a
unique lattice effect. We believe that our results are relevant
for the observed large low-temperature heat capacity and
susceptibility of Nd2−xCexCuO4, an electron-doped cuprate
superconductor.5

The stability of single-impurity Kondo screening has been
investigated by modifying the properties of the conduction
electrons. Most notably, beginning with the work of Withoff
and Fradkin,6 the suppression of the single-impurity Kondo
effect by the presence of d-wave superconducting order has
been studied. A variety of analytic and numeric tools have
been used to investigate the single-impurity Kondo screening
in a system with conduction-electron density of states �DOS�
����� ���r, with variable exponent r �see Refs. 6–12�. Here,
r=1 corresponds to the case of a d-wave superconductor, i.e.,
is the impurity version of the problem discussed in this pa-
per. For r�1, the perturbative renormalization group of the
ordinary13 Kondo problem �r=0� can be generalized.6 While
the Kondo coupling J is marginal, a fixed point value J*
=r /�0 emerges for finite but small r. Here, �0 is the DOS for
�=D with bandwidth D. Kondo screening only occurs for
J	J*, and the transition from the unscreened doublet state

to a screened singlet ground state is characterized by critical
fluctuations in time.

Numerical renormalization group �NRG� calculations
demonstrated the existence of such an impurity quantum
critical point even if r is not small, but also revealed that the
perturbative renormalization group breaks down, failing to
correctly describe this critical point.9 For r=1, Vojta and
Fritz demonstrated that the universal properties of the critical
point can be understood using an infinite-U Anderson model,
where the level crossing of the doublet and singlet ground
states is modified by a marginally irrelevant hybridization
between those states.10,11 NRG calculations further demon-
strate that the nonuniversal value for the Kondo coupling at
the critical point is still given by J*�r /�0, even if r is not
small.8 This result applies to the case of broken particle-hole
symmetry, relevant for our comparison with the Kondo lat-
tice. In the case of perfect particle-hole symmetry, it holds
that8 J*→
 for r�1 /2.

The result J*�r /�0 may also be obtained from a large N
mean-field theory,6 which, otherwise, fails to properly de-
scribe the critical behavior of the transition, in particular, if r
is not small. The result for J* as the transition between the
screened and unscreened states relies on the assumption that
the DOS behaves as ����� ���r all the way to the bandwidth.
However, in a superconductor with nodes, we expect that
������0 is essentially constant for ���	�, with gap ampli-
tude � altering the predicted location of the transition be-
tween the screened and unscreened states. To see this, we
note that, for energies above �, the approximately constant
DOS implies the renormalization group flow will be gov-
erned by the standard metallic Kondo result1,13 with r=0,
renormalizing the Kondo coupling to J̃=J / �1−J�0 ln D /��
with the effective bandwidth � �see Ref. 9�. Then, we can
use the above result in the renormalized system, obtaining
that Kondo screening occurs for J̃�0�r, which is easily
shown to be equivalent to the condition �
�* with

�* = e1/rTK, �1�

where

TK = D exp�−
1

J�0
� �2�

is the Kondo temperature of the system in the absence of a
pseudogap �which we are using here to clarify the typical
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energy scale for �*�. Setting r=1 to establish the implication
of Eq. �1� for a d-wave superconductor, we see that, due to
the d-wave pseudogap in the density of states, the conduction
electrons can only screen the impurity moment if their gap
amplitude is smaller than a critical value of the order of the
corresponding Kondo temperature TK for constant density of
states. In particular, for � large compared to the �often rather
small� energy scale TK, the local moment is unscreened,
demonstrating the sensitivity of the single-impurity Kondo
effect with respect to the low energy behavior of the host.

Given the complexity of the behavior for a single impu-
rity in a conduction electron host with a pseudogap, it seems
hopeless to study the Kondo lattice. We will show below that
this must not be the case and that, moreover, Kondo screen-
ing is stable far beyond the single-impurity result Eq. �1�, as
illustrated in Fig. 1 �the dashed line in this plot is Eq. �1�
with �0=1 /2D	. To do this, we utilize the large-N mean-field
theory of the Kondo lattice to demonstrate that the transition
between the screened and unscreened case is discontinuous.
Thus, at least within this approach, no critical fluctuations
occur �in contrast to the single-impurity case discussed
above�. More importantly, our large-N analysis also finds that
the stability regime of the Kondo-screened lattice is much
larger than that of the single impurity. Thus, the screened
heavy-electron state is more robust and the local-moment
phase only emerges if the conduction-electron d-wave gap
amplitude obeys

� 	 �c � �TKD � TK, �3�

with D the conduction-electron bandwidth. Below, we shall
derive a more detailed expression for �c; in Eq. �3� we are
simply emphasizing that �c is large compared to TK �and,
hence, Eq. �1�	.

In addition, we find that for ���c, the renormalized
mass only weakly depends on �, except for the region close
to �c. We give a detailed explanation for this enhanced sta-
bility of Kondo-lattice screening, demonstrating that it is a

direct result of the opening of a hybridization gap in the
heavy Fermi liquid state. Since the result was obtained using
a large-N mean-field theory, we stress that such an approach
is not expected to properly describe the detailed nature close
to the transition. It should, however, give a correct order of
magnitude result for the location of the transition.

To understand the resilience of Kondo-lattice screening,
recall that, in the absence of d-wave pairing, it is well known
that the lattice Kondo effect �and concomitant heavy-fermion
behavior� is due to a hybridization of the conduction band
with an f-fermion band that represents excitations of the lat-
tice of spins. A hybridized Fermi liquid emerges from this
interaction �see Fig. 4 below�. We shall see that, due to the
coherency of the Fermi liquid state, the resulting hybridized
heavy fermions are only marginally affected by the onset of
conduction-electron pairing. This weak proximity effect,
with a small d-wave gap amplitude � f ��TK /D for the
heavy fermions, allows the Kondo effect in a lattice system
to proceed via f-electron-dominated heavy-fermion states
that screen the local moments, with such screening persisting
up to much larger values of the d-wave pairing amplitude
than implied by the single-impurity result,6,7 as depicted in
Fig. 1 �which applies at low T�. A typical finite-T phase
diagram is shown in Fig. 2.

Our theory directly applies to the electron-doped cuprate
Nd2−xCexCuO4, possessing both d-wave superconduc-
tivity14,15 with Tc�20 K and heavy-fermion behavior below5

TK
2–3 K. The latter is exhibited in a large linear heat
capacity coefficient ��4 J / �mol K2� together with a large
low-frequency susceptibility � with Wilson ratio R�1.6.
The lowest crystal field state of Nd3+ is a Kramers doublet,
well separated from higher crystal field levels,16 supporting
Kondo-lattice behavior of the Nd spins. The superconducting
Cu-O states play the role of the conduction electrons. Pre-
vious theoretical work on Nd2−xCexCuO4 discussed the role
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FIG. 1. The solid line is the critical pairing strength �c for T
→0 �Eq. �32�	 separating the Kondo-screened �shaded� and local-
moment regimes in the Kondo-lattice model Eq. �4�. Following
well-known results �Refs. 6 and 7; see also the Appendix�, the
single-impurity Kondo effect is only stable for �
D exp�−2D /J�

TK �dashed line�.

0.02 0.04 0.06 0.08 0.1 0.12 0.14

0.2

0.4

0.6

0.8

1

T/TK

∆/D

local
moment

screened
Kondo lattice

FIG. 2. �Color online� The solid line is a plot of the Kondo
temperature TK���, above which V=0 �and Kondo screening is de-
stroyed�, normalized to its value at �=0 �Eq. �14a�	, as a function
of the d-wave pairing amplitude �, for the case of J=0.3D and �
=−0.1D. With these parameters, TK�0�=0.0014D, and �c, the point
where TK��� reaches zero, is 0.14D �given by Eq. �32�	. The dashed
line indicates a spinodal, along which the term proportional to V2 in
the free energy vanishes. At very small ��2.7�10−4D, where the
transition is continuous, the dashed line coincides with the solid
line.
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of conduction-electron correlations.17 Careful investigations
show that the single ion Kondo temperature slightly in-
creases in systems with electronic correlations,18,19 an effect
essentially caused by the increase in the electronic density of
states of the conduction electrons. However, the fact that
these conduction electrons are gapped has not been consid-
ered, even though the Kondo temperature is significantly
smaller than the d-wave gap amplitude ��3.7 meV �see
Ref. 20�. We argue that Kondo screening in Nd2−xCexCuO4
with TK�� can only be understood in terms of the mecha-
nism discussed here.

We add, for completeness, that an alternative scenario for
the large low-temperature heat capacity of Nd2−xCexCuO4 is
based on very low lying spin wave excitations.21 While such
a scenario cannot account for a finite value of C�T� /T as T
→0, it is consistent with the shift in the overall position of
the Nd-crystal field states upon doping. However, an analysis
of the spin wave contribution of the Nd spins shows that for
realistic parameters, C�T� /T vanishes rapidly below the
Schottky anomaly,22 in contrast to experiments. Thus, we
believe that the large heat capacity and susceptibility of
Nd2−xCexCuO4 at low temperatures originate from Kondo
screening of the Nd spins.

Despite its relevance for the d-wave superconductor
Nd2−xCexCuO4, we stress that our theory does not apply to
heavy-electron d-wave superconductors, such as CeCoIn5
�see Ref. 23�, in which the d-wave gap is not a property of
the conduction electron host, but a more subtle aspect of the
heavy-electron state itself. The latter gives rise to a heat ca-
pacity jump at the superconducting transition �C�Tc� that is
comparable to �Tc, while in our theory, �C�Tc���Tc holds.

II. MODEL

The principal aim of this paper is to study the screening of
local moments in a d-wave superconductor. Thus, we con-
sider the Kondo-lattice Hamiltonian, possessing local spins
�Si� coupled to conduction electrons �ck�� that are subject to
a pairing interaction:

H = �
k,�

�kck�
† ck� +

J

2 �
i,�,�

Si · ci�
† ���ci� + Upair. �4�

Here, J is the exchange interaction between conduction elec-
trons and local spins, and �k=�k−� with �k the conduction-
electron energy and � the chemical potential. The pairing
term

Upair = − �
k,k�

Ukk�ck↑
† c−k↓

† c−k�↓ck�↑ �5�

is characterized by the attractive interaction between conduc-
tion electrons Ukk�. We shall assume that the latter stabilizes
d-wave pairing with a gap �k=� cos 2�, with � the angle
around the conduction-electron Fermi surface.

We are particularly interested in the low-temperature
strong-coupling phase of this model, which can be studied by
extending the conduction-electron and local-moment spin
symmetry to SU�N� and focusing on the large-N limit.24 In
the case of the single Kondo impurity, the large-N approach

is not able to reproduce the critical behavior at the transition
from a screened to an unscreened state. However, it does
correctly determine the location of the transition, i.e., the
nonuniversal value for the strength of the Kondo coupling
where the transition from screened to unscreened impurity
takes place.8 Since the location of the transition and not the
detailed nature of the transition is the primary focus of this
paper, a mean-field theory is still expected to be useful.

Although the physical case corresponds to N=2, the
large-N limit yields a valid description of the heavy Fermi
liquid Kondo-screened phase.25 We, thus, write the spins in
terms of auxiliary f fermions as Si ·���→ f i�

† f i�−��� /2, sub-
ject to the constraint

�
�

f i�
† f i� = N/2. �6�

To implement the large-N limit, we rescale the exchange
coupling via J /2→J /N and the conduction-electron interac-
tion as Uk,k�→s−1Uk,k� �where N��2s+1�	. The utility of
the large-N limit is that the �mean-field� stationary-phase ap-
proximation to H is believed to be exact at large N. Perform-
ing this mean-field decoupling of H yields

H = �
k,m=−s

s

��kckm
† ckm + V�fkm

† ckm + H.c.� + �fkm
† fkm	

− �
k,m=1/2

s

��k
†c−k−mckm + H.c.� + E0, �7�

with E0 a constant in the energy that is defined below. The
pairing gap, �k, and the hybridization between conduction
and f electrons, V, result from the mean-field decoupling of
the pairing and Kondo interactions, respectively. The hybrid-
ization V �that we took to be real� measures the degree of
Kondo screening �and can be directly measured
experimentally26� and � is the Lagrange multiplier that
implements the above constraint, playing the role of the
f-electron level. The free energy F of this single-particle
problem can now be calculated, and has the form

F�V,�,�k�

=
NV2

J
−

N�

2
+ s�

kk�

�k�k�Ukk�
−1 + N �

k,�=�

�1

4
��k + ��

−
1

2
Ek� − T ln�1 + e−�Ek��� , �8�

where T=�−1 is the temperature. The first three terms are the
explicit expressions for E0 in Eq. �7�, and Ek� is

Ek� =
1
�2

��k
2 + �2 + 2V2 + �k

2 � �Sk,

Sk = ��k
2 + �k

2 − �2�2 + 4V2���k + ��2 + �k
2	 , �9�

describing the bands of our d-wave paired heavy-fermion
system.
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The phase behavior of this Kondo-lattice system for given
values of T, J, and � is determined by finding points at
which F is stationary with respect to the variational param-
eters V, �, and �k. For simplicity, henceforth we take �k as
given �and having d-wave symmetry as noted above�, with
the goal of studying the effect of nonzero pairing on the
formation of the heavy-fermion metal characterized by V and
� that satisfy the stationarity conditions

�F

�V
= 0, �10a�

�F

��
= 0, �10b�

with the second equation enforcing the constraint �Eq. �6�	.
We shall, furthermore, restrict attention to ��0 �i.e., a less
than half-filled conduction band�.

Before we proceed, we point out that the magnitude of the
pairing gap near the unpaired heavy-fermion Fermi surface
�located at �=V2 /�� is remarkably small. Taylor expanding
Ek− near this point, we find

Ek− �
�2

V2
�� −
V2

�
−

��k
2

V2 �2

+ �k
2�1/2

, �11�

giving a heavy-fermion gap � fk= �� /V�2�k �with amplitude
� f =��� /V�2	. We show below that �� /V�2�1 such that
� fk��k. In Fig. 3, we plot the lower heavy-fermion band
for the unpaired case �k=0 �dashed line� along with �Ek−
for the case of finite �k �solid lines� in the vicinity of the
unpaired heavy-fermion Fermi surface, showing the small
heavy-fermion gap � fk. Thus, we find a weak proximity ef-
fect in which the heavy-fermion quasiparticles, which are
predominantly of f character, are only weakly affected by the
presence of d-wave pairing in the conduction-electron band.

III. KONDO-LATTICE SCREENING

A. Normal conduction electrons

A useful starting point for our analysis is to recall the
well-known27 unpaired ��=0� limit of our model. By mini-
mizing the corresponding free energy �simply the �=0 limit
of Eq. �8�	, one obtains, at low temperatures, that the Kondo
screening of the local moments is represented by the non-
trivial stationary point of F at V=V0 and �=�0=V0

2 /D, with

V0 ��D + �

2�0
exp�−

1

2J�0
� . �12�

Here, we have taken the conduction-electron density of states
to be a constant, �0= �2D�−1, with 2D the bandwidth. The
resulting phase is a metal accommodating both the conduc-
tion and f electrons with a large density of states ��0

−1 near
the Fermi surface at �k��+V0

2 /�0, revealing its heavy-
fermion character. In Fig. 4, we plot the energy bands

E���k� =
1

2
��k + � � ���k − ��2 + 4V2� �13�

of this heavy Fermi liquid in the low-T limit.
With increasing T, the stationary V and � decrease mono-

tonically, vanishing at the Kondo temperature

TK =
2e�

�
�D2 − �2 exp
−

1

�0J
� �14a�

=
2e�

�
�D − �

D + �
�0. �14b�

Here, the second line is meant to emphasize that TK is of the
same order as the T=0 value of the f-fermion chemical po-
tential �0, and therefore, TK�V0, i.e., TK is small compared
to the zero-temperature hybridization energy V0.
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FIG. 3. The dashed line is the lower heavy-fermion band �cross-
ing zero at the heavy-fermion Fermi surface� for the unpaired ��
=0� case, and the solid lines are �Ek− for �k=0.1D, showing a
small f-electron gap � fk�0.014D.
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FIG. 4. Plot of the energy bands E+��� �top curve� and E−���
�bottom curve�, defined in Eq. �13�, in the heavy Fermi liquid state
�for �=0�, for the case V=0.2D and �=0.04D, that has a heavy-
fermion Fermi surface near �=D and an experimentally measurable
hybridization gap �Ref. 26� �the minimum value of E+−E−, i.e., the
direct gap� equal to 2V
�TKD. Note, however, the indirect gap is
�
TK.
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It is well established that the phase-transition-like behav-
ior of V at TK is, in fact, a crossover once N is finite.1,24

Nevertheless, the large-N approach yields the correct order
of magnitude estimate for TK and provides a very useful
description of the strong-coupling heavy Fermi liquid re-
gime, including the emergence of a hybridization gap in the
energy spectrum.

B. d-wave paired conduction electrons

Next, we analyze the theory in the presence of d-wave
pairing with gap amplitude �. Thus, we imagine continu-
ously turning on the d-wave pairing amplitude �, and study
the stability of the Kondo-screened heavy Fermi liquid state
characterized by the low-T hybridization V0 �Eq. �12�	. As
we discussed in Sec. I, in the case of a single Kondo impu-
rity, it is well known that Kondo screening is qualitatively
different in the case of d-wave pairing, and the single impu-
rity is only screened by the conduction electrons if the
Kondo coupling exceeds a critical value

J* �
1

�0

1

1 + ln D/�
. �15�

For J�J*, the impurity is unscreened. This result for J* can
equivalently be expressed in terms of a critical pairing
strength �*, beyond which Kondo screening is destroyed for
a given J:

�* = D exp
1 −
1

�0J
� �16�

�equivalent to Eq. �1� for r=1	, which is proportional to the
Kondo temperature TK. This result, implying that a d-wave
superconductor can only screen a local spin if the pairing
strength is much smaller than TK, can also be derived within
the mean-field approach to the Kondo problem, as shown in
the Appendix �see also Ref. 7�. Within this approach, a con-
tinuous transition to the unscreened phase �where V2→0
continuously� takes place at ���*.

Thus, calculations for the single-impurity case indicate
that Kondo screening is rather sensitive to a d-wave pairing
gap. The question we wish to address is, how does d-wave
pairing affect Kondo screening in the lattice case? In fact, we
will see that the results are quite different in the Kondo lat-
tice case, such that Kondo screening persists beyond the
point �*. To show this, we have numerically studied the �

dependence of the saddle point of the free energy Eq. �8�,
showing that, at low temperatures, V only vanishes, in a dis-
continuous manner, at much larger values of �, as shown in
Fig. 5 �solid dots� for the case of J=0.30D, �=−0.1D, and
T=10−4D �i.e., T /TK�0.069�. In Fig. 2, we plot the phase
diagram as a function of T and �, for the same values of J
and �, with the solid line denoting the line of discontinuous
transitions.

The dashed line in Fig. 2 denotes the spinodal Ts of the
free energy F at which the quadratic coefficient of Eq. �8�
crosses zero. The significance of Ts is that, if the Kondo-to-
local-moment transition were continuous �as it is for �=0�,
this would denote phase boundary; the T→0 limit of this

quantity coincides with the single-impurity critical pairing
Eq. �16�. An explicit formula for Ts can be easily obtained by
finding the quadratic coefficient of Eq. �8�:

1

J
= �

k

tanh Ek/2Ts���
2Ek

, �17�

with Ek���k
2 +�k

2 and where we set �=0 �which must occur
at a continuous transition where V→0, as can be seen by
analyzing Eq. �10b�	. As seen in Fig. 2, the spinodal tem-
perature is generally much smaller than the true transition
temperature; however, for very small �→0, Ts��� coincides
with the actual transition �which becomes continuous�, as
noted in the figure caption.

Our next task is to understand these results within an ap-
proximate analytic analysis of Eq. �8�; before doing so, we
stress again that the discontinuous transition from a screened
to an unscreened state as a function of T becomes a rapid
crossover for finite N. The large-N theory is, however, ex-
pected to correctly determine where this crossover takes
place.

1. Low-T limit

According to the numerical data �points� plotted in Fig. 5,
the hybridization V is smoothly suppressed with increasing
pairing strength � before undergoing a discontinuous jump
to V=0. To understand, analytically, the � dependence of V
at low T, we shall analyze the T=0 limit of F, i.e., the
ground-state energy E. The essential question concerns the
stability of the Kondo-screened state with respect to a
d-wave pairing gap, characterized by the following
�-dependent hybridization

V��� = V0�1 −
�2

�typ
2 � , �18�

with �typ an energy scale, to be derived, that gives the typical
value of � for which the heavy-fermion state is affected by
d-wave pairing.
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FIG. 5. �Color online� Mean-field Kondo parameter V as a func-
tion of the d-wave pairing amplitude �, for exchange coupling J
=0.30D and chemical potential �=−0.1D, according to the approxi-
mate formula Eq. �30� �solid line� and via a direct minimization of
Eq. �8� at T=10−4D �points�, the latter exhibiting a first-order tran-
sition near �=0.086D.
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To show that Eq. �18� correctly describes the smooth sup-
pression of the hybridization with increasing �, and to obtain
the scale �typ, we now consider the dimensionless quantity

�� � −
1

2�0

�2E

��2 �19�

that characterizes the change of the ground-state energy with
respect to the pairing gap. Separating the amplitude of the
gap from its momentum dependence, i.e., writing �k=��k,
we obtain from the Hellmann-Feynman theorem that

�� = −
1

2�0�
� �H

��
� = −

N

2�0�
�
k

�k�ckm
† c−k−m

† � . �20�

For �→0, this yields

�� =
N

2�0
� d�

2�
�
k

�k
2Gcc�k,i��Gcc�− k,− i�� . �21�

Here, Gcc�k , i�� is the conduction-electron propagator. As
expected, �� is the particle-particle correlator of the conduc-
tion electrons. Thus, for T=0, the particle-particle response
will be singular. This is the well-known Cooper instability.
For V=0, we obtain, for example,

���V = 0� =
N

8
log

D2 − �2

�2 , �22�

where we used � as a lower cutoff to control the Cooper
logarithm. Below we will see that, except for extremely
small values of �, the corresponding Cooper logarithm is
overshadowed by another logarithmic term that does not
have its origin in states close to the Fermi surface, but rather
results from states with typical energy V��TKD.

In order to evaluate �� in the heavy Fermi liquid state, we
start from

Gcc�k,�� =
vk

2

� − E+��k�
+

uk
2

� − E−��k�
, �23�

where E� is given in Eq. �13� and the coherence factors of
the hybridized Fermi liquid are

uk
2 =

1

2�1 −
�k − �

���k − ��2 + 4V2� ,

vk
2 =

1

2�1 +
�k − �

���k − ��2 + 4V2� . �24�

Inserting Gcc�k ,�� into the above expression for �� yields

�� =
N

8
�

−D−�

D−�

d�� v4

E+
+

u4

�E−�
+

4v2u2��E−�
E+ + E−

� . �25�

We used that E+	0 is always fulfilled, as we consider a less
than half-filled conduction band.

Considering first the limit �=0, it holds E−����0 and the
last term in the above integral disappears. The remaining
terms simplify to

���� = 0� =
N

8
�

−D−�

D−�

d�
1

��2 + 4V2
=

N

8
log

D2 − �2

4V2 .

�26�

Even for � nonzero, this is the dominant contribution to ��

in the relevant limit ��V�D. To demonstrate this, we ana-
lyze Eq. �25� for nonzero �, but assuming ��V as is, in-
deed, the case for small �. The calculation is lengthy but
straightforward. It follows

�� =
N

8
�1 +

�

D
�log

D2 − �2

4V2 +
N

8

�

D
log

D���
�2 . �27�

The last term is the Cooper logarithm, but now in the heavy-
fermion state. The prefactor � /D�TK /D is a result of the
small weight of the conduction electrons on the Fermi sur-
face �i.e., where ��V2 /�� as well as the reduced velocity
close to the heavy electron Fermi surface. Specifically, it
holds u2���V2 /����2 /V2 as well as E−���V2 /��
��2 /V2��−V2 /��.

Thus, except for extremely small gap values where �2

�D2� D
4TK

�−D/TK, �� is dominated by the �=0 result �Eq. �26�	
and the Cooper logarithm plays no role in our analysis. The
logarithm in Eq. �26� is not originating from the heavy-
electron Fermi surface �i.e., it is not from �� r2

� �. Instead, it
has its origin in the integration over states where E−�0. The
important term v4

2E+
− u4

2E−
in Eq. �25� is peaked for ��0, i.e.,

where E����0�= �V and is large as long as ���
V. For �

�0 holds v4

2E+
�− u4

2E−
� 1

32V . This peak at ��0 has its origin
in the competition between two effects. Usually, u or v are
large when E���. The only regime where u or v are still
sizable while E� remain small is close to the bare
conduction-electron Fermi surface at ����V �the position of
the level repulsion between the two hybridizing bands, see
Fig. 4�. Thus, the logarithm is caused by states that are close
to the bare conduction-electron Fermi surface. Although
these states have the strongest response to a pairing gap, they
do not have much to do with the heavy-fermion character of
the system. It is interesting that this heavy-fermion pairing
response is the same even in the case of a Kondo insulator
where �=0 and the Fermi level is in the middle of the hy-
bridization gap.

The purpose of the preceding analysis was to derive an
accurate expression for the ground-state energy E at small �.
Using Eq. �19� gives

E = E�� = 0� − ���0�2, �28�

which, using Eq. �26� and considering the leading order in
��V and ��V, safely neglecting the last term of Eq. �27�
according to the argument of the previous paragraph, and
dropping overall constants, yields

E

N
�

V2

J
−

�

2
+ V2�0 ln

�

D + �
−

�0�2

8
ln

D2 − �2

V2 . �29�

Using Eq. �10�, the stationary value of the hybridization �to
leading order in �2� is then obtained via minimization with
respect to V and �. This yields
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V��� � V0 −
�2

16V0
, �30�

with the stationary value of �=2�0V2, which establishes Eq.
�18�. A smooth suppression of the Kondo hybridization from
the �=0 value V0 �Eq. �12�	 occurs with increasing d-wave
pairing amplitude � at low T. This result, thus, implies that
the conduction-electron gap only causes a significant reduc-
tion of V and � for ���typ��TKD.

In Fig. 5, we compare V��� of Eq. �30� �solid line� with
the numerical result �solid dots�. As long as V stays finite,
the simple relation Eq. �30� gives an excellent description
of the heavy-electron state. Above the small f-electron gap
� f, these values of V and � yield a large heat capacity
coefficient �taking N=2� �� 2

3�2�0V2 /�2 and susceptibility
��2�0V2 /�2, reflecting the heavy-fermion character of
this Kondo-lattice system even in the presence of a
d-wave pairing gap. According to our theory, this standard
heavy-fermion behavior �as observed experimentally5 in
Nd2−xCexCuO4� will be observed for temperatures that are
large compared to the f-electron gap � f. However, for very
small T�� f, the temperature dependence of the heat capac-
ity changes �due to the d-wave character of the f-fermion
gap�, behaving as C=AT2 /� with a large prefactor A
��D /TK�2. This leads to a sudden drop in the heat capacity
coefficient at low T, as depicted in Fig. 6.

The surprising robustness of the Kondo screening with
respect to d-wave pairing is rooted in the weak proximity
effect of the f levels and the coherency as caused by the
formation of the hybridization gap. Generally, a pairing gap
affects states with energy �k from the Fermi energy. How-
ever, low energy states that are within TK of the Fermi energy
are predominantly of f-electron character �a fact that follows
from our large-N theory, but also from the much more gen-

eral Fermi liquid description of the Kondo lattice28� and are
protected by the weak proximity. These states only sense a
gap � fk��k and can readily participate in local-moment
screening.

Furthermore, the opening of the hybridization gap coher-
ently pushes conduction electrons to energies �V from the
Fermi energy. Only for ��V��TKD will the conduction
electrons’ ability to screen the local moments be affected by
d-wave pairing. This situation is very different from the
single-impurity Kondo problem, where conduction-electron
states come arbitrarily close to the Fermi energy.

2. First-order transition

The result Eq. �30� of the preceding section strictly ap-
plies for �→0, although as seen in Fig. 5, in practice it
agrees quite well with the numerical minimization of the free
energy until the first-order transition. To understand the way
in which V is destroyed with increasing �, we must consider
the V→0 limit of the free energy.

We start with the ground-state energy. Expanding E �the
T→0 limit of Eq. �8�	 to leading order in V and zeroth order
in � �valid for V→0�, we find �dropping overall constants�

E

N
� − 4�0V2 ln

�c

�
+

16

3

�0

�
V3, �31�

where we defined the quantity �c

�c = 4�D2 − �2 exp�−
1

2�0J
� , �32�

at which the minimum value of V in Eq. �31� vanishes con-
tinuously, with the formula for V��� given by

V��� �
1

2
� ln

�c

�
�33�

near the transition. According to Eq. �32�, the equilibrium
hybridization V vanishes �along with the destruction of
Kondo screening� for pairing amplitude �c
�TKD, of the
same order of magnitude as the T=0 hybridization V0, as
expected �and advertised above in Eq. �3�	.

Equation �32� strictly applies only at T=0, apparently
yielding a continuous transition at which V→0 for �→�c.
What about for T�0? We find that, for small but nonzero T,
Eq. �32� approximately yields the correct location of the
transition, but that the nature of the transition changes from
continuous to first order. Thus, for � near �c, there is a
discontinuous jump to the local-moment phase that is best
obtained numerically, as shown above in Figs. 5 and 2. How-
ever, we can get an approximate analytic understanding of
this first-order transition by examining the low-T limit. Since
excitations are gapped, at low T the free energy FK of the
Kondo-screened �V�0� phase is well approximated by in-
serting the stationary solution Eq. �33� into Eq. �31�:

FK

N
� −

1

6
�0�2 ln3 �c

�
, �34�

for FK at �→�c. The discontinuous Kondo-to-local-moment
transition occurs when the Kondo free energy Eq. �34� is
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C/γ0T

T/D

FIG. 6. Plot of the low-temperature specific heat coefficient C
T

=− �2F
�T2 , for the case of �=10−2D, V=10−1D, and �=−0.1D, for the

metallic case ��=0, dashed line�, and for the case of nonzero
d-wave pairing ��=0.1D, solid line�. This shows that, even with
nonzero �, the specific heat coefficient will appear to saturate at a
large value at low T �thus, exhibiting signatures of a heavy-fermion
metal� before vanishing at asymptotically low T�� f �=��� /V�2

=10−4D	. Each curve is normalized to the T=0 value for the me-
tallic case, �0� 2

3�2�0V2 /�2.
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equal to the local-moment free energy. For the latter, we set
V=�=0 in Eq. �8�, obtaining �recall Ek=��k

2 +�k
2�

FLM

N
� −

1

2
�0�D + ��2 −

1

4
�0�2 ln

4�D2 − �2

�

− T ln 2 − T�
k

ln�1 + e−�Ek	 , �35�

where we dropped an overall constant depending on the
conduction-band interaction.

The term proportional to T in Eq. �35� comes from the
fact that Ek−=0 for V=�=0, and corresponds to the entropy
of the local moments. At low T, the gapped nature of the
d-wave quasiparticles implies that the last term in Eq. �35�
can be neglected �although the nodal quasiparticles give a
subdominant power-law contribution�. In deriving the Kondo
free energy FK �Eq. �34�	, we dropped overall constant
terms; reestablishing these to allow a comparison to FLM,
and setting FLM=FK, we find

1

6
�0�2 ln3 �c

�
= T ln 2 �36�

that can be solved for temperature to find the transition tem-
perature TK for the first-order Kondo-screened-to-local-
moment phase transition:

TK��� =
�0�2

6 ln 2
ln3 �c

�
�37�

that is valid for �→�c, providing an accurate approximation
to the numerically determined TK curve in Fig. 2 �solid line�
in the low-temperature regime �i.e., near �c=0.14D in Fig.
2�.

Equation �37� yields the temperature at which, within
mean-field theory, the screened Kondo lattice is destroyed by
the presence of nonzero d-wave pairing; thus, as long as �
�TK���, heavy-fermion behavior is compatible with d-wave
pairing in our model. The essential feature of this result is
that TK��� is only marginally reduced from the �=0 Kondo
temperature Eq. �2�, establishing the stability of this state. In
comparison, according to expectations based on a single-
impurity analysis, one would expect the Kondo temperature
to follow the dashed line in Fig. 2.

Away from this approximate result valid at large N, the
Ruderman-Kittel-Kasuya-Yosida interaction between mo-
ments is expected to lower the local-moment free energy,
altering the predicted location of the phase boundary. Then,
even for T=0, a level crossing between the screened and
unscreened ground states occurs for a finite V. Still, as long
as the �=0 heavy-fermion state is robust, it will remain
stable at low T for � small compared to �c, as summarized
in Figs. 1 and 2.

IV. CONCLUSIONS

We have shown that a lattice of Kondo spins coupled to
an itinerant conduction band experiences robust Kondo
screening even in the presence of d-wave pairing among the
conduction electrons. The heavy-electron state is protected

by the large hybridization energy V�TK. The d-wave gap in
the conduction band induces a relatively weak gap at the
heavy-fermion Fermi surface, allowing Kondo screening and
heavy-fermion behavior to persist. Our results demonstrate
the importance of Kondo-lattice coherency, manifested by
the hybridization gap, which is absent in the case of dilute
Kondo impurities. As pointed out in detail, the origin for the
unexpected robustness of the screened heavy-electron state is
the coherency of the Fermi liquid state. With the opening of
a hybridization gap, conduction-electron states are pushed to
energies of order �TKD away from the Fermi energy.
Whether or not these conduction electrons open up a d-wave
gap is, therefore, of minor importance for the stability of the
heavy-electron state.

Our conclusions are based on a large-N mean-field theory.
In case of a single impurity, numerical renormalization group
calculations demonstrated that such a mean-field approach
fails to reproduce the correct critical behavior where the tran-
sition between screened and unscreened impurity takes
place. However, the mean-field theory yields the correct
value for the strength of the Kondo coupling at the transition.
In our paper, we are not concerned with the detailed nature in
the near vicinity of the transition. Our focus is solely the
location of the boundary between the heavy Fermi liquid and
unscreened local-moment phase, and we do expect that a
mean-field theory gives the correct result. One possibility to
test the results of this paper is a combination of dynamical
mean-field theory and numerical renormalization group for
the pseudogap Kondo-lattice problem.

In case where Kondo screening is inefficient and �
	�TKD, i.e., the “local moment” phase of Figs. 1 and 2, the
ground state of the moments will likely be magnetically or-
dered. This can have interesting implications for the super-
conducting state. Examples are reentrance into a normal
phase �similar to ErRh4B4, see Ref. 29� or a modified vortex
lattice in the low-temperature magnetic phase. In our theory,
we ignored these effects. This is no problem as long as the
superconducting gap amplitude � is small compared to
�TKD and the Kondo lattice is well screened. Thus, the re-
gion of stability of the Kondo-screened state will not be sig-
nificantly affected by including the magnetic coupling be-
tween the f electrons. Only the nature of the transition and,
of course, the physics of the unscreened state will depend on
it. Finally, our theory offers an explanation for the heavy-
fermion state in Nd2−xCexCuO4, where ��TK.
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APPENDIX: SINGLE IMPURITY CASE

For a single Kondo impurity, a critical value J* for the
coupling between conduction electron and impurity spin
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emerges, separating Kondo-screened from local-moment be-
havior for a single spin impurity in a d-wave superconductor,
see Eq. �15�. As discussed in the main text, this is equivalent
to a critical pairing Eq. �16�, above which Kondo screening
does not occur. The result was obtained in careful numerical
renormalization group calculations.8,9 In the present section,
we demonstrate that the same result also follows from a
simple large-N mean-field approach. It is important to stress
that this approach fails to describe the detailed critical be-
havior. However, here we are only concerned with the ap-
proximate value of the nonuniversal quantity J*. Indeed,
mean-field theory is expected to give a reasonable value for
the location of the transition.

Our starting point is the model Hamiltonian

H = �
km

�kckm
† ckm + +

J

N
�

m,m�,k,k�

fm
† fmckm

† ck�m�

− �
kk�

Ukk�ck↑
† c−k↓

† c−k�↓ck�↑, �A1�

with the corresponding mean-field action S=Sf +Sb+Sint with
�introducing the Lagrange multiplier � and hybridization V
as usual, and making the BCS mean-field approximation for
the conduction fermions�:

Sf =� d��
m

�

k
ckm

† ��� + �k�ckm + fm
† ��� + ��fm� ,

Sb =� d��N

J
V†V − �Nq0� , �A2�

Sint =� d��
mk

�fm
† ckmV + V†ckmfm� + �

kk�

�k�k�Ukk�
−1

− �
m=1/2

J

��k
†c−k−mckm + ckm

† c−k−m
† �k� , �A3�

where the � integral implements the constraint Nq0
=�mfm

† fm, with q0=1 /2. Here, we have taken the large-N
limit, with N=2J+1.

The mean-field approximation having been made, it is
now straightforward to trace over the fermionic degrees of
freedom to yield

F =
N�V�2

J
− �Nq0 −

N

2
T�

�

ln��i� − � − �1�i��	

��i� + � + �1�− i��	 − �2�i���̄2�i��� , �A4�

for the free energy contribution due to a single impurity in a
d-wave superconductor. Here, we dropped an overall con-
stant due to the conduction fermions only, as well as the
quadratic term in �k �which, of course, determines the equi-
librium value of �k; here, as in the main text, we are inter-
ested in the impact of a given �k on the degree of Kondo
screening�, and defined the functions

�1�i�� = �V�2�
k

i� + �k

�i��2 − Ek
2 , �A5�

�2�i�� = V2�
k

�k

�i��2 − Ek
2 , �A6�

�̄2�i�� = �V†�2�
k

�k

�i��2 − Ek
2 . �A7�

At this point, we note that, for a d-wave superconductor,

�2= �̄2=0 due to the sign change of the d-wave order param-
eter. The self-energy �1�i�� is nonzero and essentially mea-
sures the DOS �d��� of the d-wave superconductor. In fact,
one can show that the corresponding retarded function
�1R��� satisfies

�1R��� = �V�2�
−





dz
�d�z�

� + i� − z
, �A8�

with �=0+, so that the imaginary part �1R� ���=−��V�2�d���
measures the DOS. Writing �1R�����V�2G���, we have for
the free energy

F =
N�V�2

J
− �Nq0 + N�

−



 dz

�
nF�z�tan−1� − �V�2G��z�

z − � − �V�2G��z�� ,

�A9�

and for the stationarity conditions �Eq. �10�	,

1

J
= �

−



 dz

�

nF�z�G��z��z − ��
�z − � − �V�2G��z�	2 + �V�4�G��z�	2 , �A10�

q0 = − �
−



 dz

�

nF�z��V�2G��z�
�z − � − �V�2G��z�	2 + �V�4�G��z�	2 ,

�A11�

which can be evaluated numerically to determine V and � as
a function of T and �.

The Kondo temperature TK is defined by the temperature
at which V2→0 continuously; at such a point, the constraint
Eq. �A11� requires �→0. Here, we are interested in finding
the pairing � at which TK→0; thus, this is obtained by set-
ting T=V=�=0 in Eq. �A10�:

1

J
= �

−D−�

0 dz

�

− ��d�z�
z

�A12a�

=− �0 log
�

D + �
+ �0, �A12b�

where, for simplicity, in the final line we approximated �d�z�
to be given by

�d��� � ��0���/� for ��� � �

�0 for ��� 	 �
� �A13�
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that captures the essential features �except for the narrow
peak near �=�� of the true DOS of a d-wave supercon-
ductor, with �0 the �assumed constant� DOS of the underly-
ing conduction band.

The solution to Eq. �A12� is

�* = �D + ��exp
1 −
1

�0J
� , �A14�

showing a destruction of the Kondo effect for �→�*, as
V→0 continuously, thus separating the Kondo-screened �for
���*� from the local-moment �for �	�*� phases.
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